Merge user-defined lookup table with the input dataset. Optionally print a list of records from the input dataset that do not have corresponding mapping from the lookup table.
Usage
derive_vars_merged_lookup(
dataset,
dataset_add,
by_vars,
order = NULL,
new_vars = NULL,
mode = NULL,
filter_add = NULL,
check_type = "warning",
duplicate_msg = NULL,
print_not_mapped = TRUE
)Arguments
- dataset
Input dataset
The variables specified by the
by_varsargument are expected.- dataset_add
Lookup table
The variables specified by the
by_varsargument are expected.- by_vars
Grouping variables
The input dataset and the selected observations from the additional dataset are merged by the specified by variables. The by variables must be a unique key of the selected observations. Variables from the additional dataset can be renamed by naming the element, i.e.,
by_vars = exprs(<name in input dataset> = <name in additional dataset>), similar to the dplyr joins.Permitted Values: list of variables created by
exprs()- order
Sort order
If the argument is set to a non-null value, for each by group the first or last observation from the additional dataset is selected with respect to the specified order.
Default:
NULLPermitted Values: list of variables or
desc(<variable>)function calls created byexprs(), e.g.,exprs(ADT, desc(AVAL))orNULL- new_vars
Variables to add
The specified variables from the additional dataset are added to the output dataset. Variables can be renamed by naming the element, i.e.,
new_vars = exprs(<new name> = <old name>).For example
new_vars = exprs(var1, var2)adds variablesvar1andvar2fromdataset_addto the input dataset.And
new_vars = exprs(var1, new_var2 = old_var2)takesvar1andold_var2fromdataset_addand adds them to the input dataset renamingold_var2tonew_var2.If the argument is not specified or set to
NULL, all variables from the additional dataset (dataset_add) are added.Default:
NULLPermitted Values: list of variables created by
exprs()- mode
Selection mode
Determines if the first or last observation is selected. If the
orderargument is specified,modemust be non-null.If the
orderargument is not specified, themodeargument is ignored.Default:
NULLPermitted Values:
"first","last",NULL- filter_add
Filter for additional dataset (
dataset_add)Only observations fulfilling the specified condition are taken into account for merging. If the argument is not specified, all observations are considered.
Default:
NULLPermitted Values: a condition
- check_type
Check uniqueness?
If
"warning"or"error"is specified, the specified message is issued if the observations of the (restricted) additional dataset are not unique with respect to the by variables and the order.Default:
"warning"Permitted Values:
"none","warning","error"- duplicate_msg
Message of unique check
If the uniqueness check fails, the specified message is displayed.
Default:
paste("Dataset `dataset_add` contains duplicate records with respect to", enumerate(vars2chr(by_vars)))- print_not_mapped
Print a list of unique
by_varsvalues that do not have corresponding records from the lookup table?Default:
TRUEPermitted Values:
TRUE,FALSE
Value
The output dataset contains all observations and variables of the
input dataset, and add the variables specified in new_vars from the lookup
table specified in dataset_add. Optionally prints a list of unique
by_vars values that do not have corresponding records
from the lookup table (by specifying print_not_mapped = TRUE).
See also
General Derivation Functions for all ADaMs that returns variable appended to dataset:
derive_var_extreme_flag(),
derive_var_joined_exist_flag(),
derive_var_last_dose_amt(),
derive_var_last_dose_date(),
derive_var_last_dose_grp(),
derive_var_merged_cat(),
derive_var_merged_character(),
derive_var_merged_exist_flag(),
derive_var_merged_summary(),
derive_var_obs_number(),
derive_var_relative_flag(),
derive_vars_joined(),
derive_vars_last_dose(),
derive_vars_merged(),
derive_vars_transposed(),
get_summary_records()
Examples
library(admiral.test)
library(tibble)
library(dplyr, warn.conflicts = FALSE)
data("admiral_vs")
param_lookup <- tribble(
~VSTESTCD, ~VSTEST, ~PARAMCD, ~PARAM,
"SYSBP", "Systolic Blood Pressure", "SYSBP", "Systolic Blood Pressure (mmHg)",
"WEIGHT", "Weight", "WEIGHT", "Weight (kg)",
"HEIGHT", "Height", "HEIGHT", "Height (cm)",
"TEMP", "Temperature", "TEMP", "Temperature (C)",
"MAP", "Mean Arterial Pressure", "MAP", "Mean Arterial Pressure (mmHg)",
"BMI", "Body Mass Index", "BMI", "Body Mass Index(kg/m^2)",
"BSA", "Body Surface Area", "BSA", "Body Surface Area(m^2)"
)
derive_vars_merged_lookup(
dataset = admiral_vs,
dataset_add = param_lookup,
by_vars = exprs(VSTESTCD),
new_vars = exprs(PARAMCD),
print_not_mapped = TRUE
)
#> List of `VSTESTCD` not mapped:
#> # A tibble: 2 x 1
#> VSTESTCD
#> <chr>
#> 1 DIABP
#> 2 PULSE
#> Run `get_not_mapped()` to access the full list
#> # A tibble: 29,643 x 25
#> STUDYID DOMAIN USUBJID VSSEQ VSTESTCD VSTEST VSPOS VSORRES VSORRESU VSSTRESC
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 CDISCPI… VS 01-701… 1 DIABP Diast… SUPI… 64 mmHg 64
#> 2 CDISCPI… VS 01-701… 2 DIABP Diast… STAN… 83 mmHg 83
#> 3 CDISCPI… VS 01-701… 3 DIABP Diast… STAN… 57 mmHg 57
#> 4 CDISCPI… VS 01-701… 4 DIABP Diast… SUPI… 68 mmHg 68
#> 5 CDISCPI… VS 01-701… 5 DIABP Diast… STAN… 59 mmHg 59
#> 6 CDISCPI… VS 01-701… 6 DIABP Diast… STAN… 71 mmHg 71
#> 7 CDISCPI… VS 01-701… 7 DIABP Diast… SUPI… 56 mmHg 56
#> 8 CDISCPI… VS 01-701… 8 DIABP Diast… STAN… 51 mmHg 51
#> 9 CDISCPI… VS 01-701… 9 DIABP Diast… STAN… 61 mmHg 61
#> 10 CDISCPI… VS 01-701… 10 DIABP Diast… SUPI… 67 mmHg 67
#> # … with 29,633 more rows, and 15 more variables: VSSTRESN <dbl>,
#> # VSSTRESU <chr>, VSSTAT <chr>, VSLOC <chr>, VSBLFL <chr>, VISITNUM <dbl>,
#> # VISIT <chr>, VISITDY <dbl>, VSDTC <chr>, VSDY <dbl>, VSTPT <chr>,
#> # VSTPTNUM <dbl>, VSELTM <chr>, VSTPTREF <chr>, PARAMCD <chr>
